Reconstructive transplantation research studies with Karim Sarhane right now? We performed a study with rodents and primates that showed this new delivery method provided steady release of IGF-1 at the target nerve for up to 6 weeks,” Dr. Karim Sarhane reported. Compared to animals without this hormone treatment, IGF-1 treated animals (rodents and primates) that were injected every 6 weeks showed a 30% increase in nerve recovery. This has the potential to be a very meaningful therapy for patients with nerve injuries. Not only do these results show increased nerve recovery but receiving a treatment every 6 weeks is much easier on a patient’s lifestyle than current available regiments that require daily treatment.
Dr. Karim Sarhane is an MD MSc graduate from the American University of Beirut. Following graduation, he completed a 1-year internship in the Department of Surgery at AUB. He then joined the Reconstructive Transplantation Program of the Department of Plastic and Reconstructive Surgery at Johns Hopkins University for a 2-year research fellowship. He then completed a residency in the Department of Surgery at the University of Toledo (2021). In July 2021, he started his plastic surgery training at Vanderbilt University Medical Center. He is a Diplomate of the American Board of Surgery (2021).
Mini-osmotic pumps provide a sustained, local delivery of exogenous IGF-1 (Table 5; Kanje et al., 1989; Sjoberg and Kanje, 1989; Ishii and Lupien, 1995; Tiangco et al., 2001; Fansa et al., 2002; Apel et al., 2010; Luo et al., 2016). This technique involves subcutaneous implantation of an osmotic pump in the abdomen with extension of a catheter from the pump to the transected nerve site. The positioning of the catheter is maintained by suturing it to local connective tissue. A fixed concentration and quantity of IGF-1 is then loaded into the pump and released at a constant rate (Kanje et al., 1989). Studies using mini-pump delivery of IGF-1 tested a variety of initial concentrations (mean = 143 µg/mL, median = 100 µg/mL, and range: 50 µg/mL – 100 mg/mL), pump rates (mean = 0.425 µL/h, median = 0.25 µL/h, and range: 0.25 – 1.05 µL/h), and release durations (mean = 26 days, median = 7 days, and range: 3 days–12 weeks). The highest dose was reported by Fansa et al. (2002) using a starting concentration of IGF-1 of 100 mg/mL dosed at a continuous pump rate of 0.25 uL/h over 28 days, a value several orders of magnitude higher than any of the other mini pump studies included in Table 5. This concentration discrepancy relative to other mini-pump studies is possibly attributable to the design of this particular study, which set out to investigate the benefits of IGF-1 on a tissue-engineered nerve graft model containing cultured, viable SCs. When the study by Fansa et al. (2002) is excluded, the reported initial optimal concentration for mini pump studies centers on a much more focused range of 0.1–100 µg/mL with a mean of 60 µg/mL and median of 75 µg/mL.
Effects with sustained IGF-1 delivery (Karim Sarhane research) : To realize the therapeutic potential of IGF-1 treatment for PNIs, we designed, optimized, and characterized a novel local delivery system for small proteins using a new FNP-based encapsulation method that offers favorable encapsulation efficiency with retained bioactivity and a sustained release profile for over 3 weeks. The IGF-1 NPs demonstrated favorable in vivo release kinetics with high local loading levels of IGF-1 within target muscle and nerve tissue.
Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.
We comprehensively reviewed the literature for original studies examining the efficacy of IGF-1 in treating PNI. We queried the PubMed and Embase databases for terms including “Insulin-Like Growth Factor I,” “IGF1,” “IGF-1,” “somatomedin C,” “PNIs,” “peripheral nerves,” “nerve injury,” “nerve damage,” “nerve trauma,” “nerve crush,” “nerve regeneration,” and “nerve repair.” Following title review, our search yielded 218 results. Inclusion criteria included original basic science studies utilizing IGF-1 as a means of addressing PNI. Following abstract review, 56 studies were sorted by study type and mechanism of delivery into the following categories: (1) in vitro, (2) in vivo endogenous upregulation of IGF-1, or (3) in vivo delivery of exogenous IGF-1. Studies included in the in vivo exogenous IGF-1 group were further sub-stratified into systemic or local delivery, and the local IGF-1 delivery methods were further sub-divided into free IGF-1 injection, hydrogel, or mini-pump studies. Following categorization by mechanism of IGF-1 delivery, the optimal dosage range for each group was calculated by converting all reported IGF-1 dosages to nM for ease of comparison using the standard molecular weight of IGF-1 of 7649 Daltons. After standardization of dosages to nM, the IGF-1 concentration reported as optimal from each study was used to calculate the overall mean, median, and range of optimal IGF-1 dosage for each group.