Best precision metal stamping provider

Precision metal stamping factory right now: The factory has strong technical force, with 45 professional mold technicians and 5 mold design engineers, from product evaluation to mold design, manufacturing, assembly and production, a one-stop service. There are 70 sets stamping machines, punching tonnage from 25-200 tons, stamping speed can reach 1200 times/ min. We can produce different material with thickness 0.1-5.0MM, Single stamping terminal monthly maximum capacity is 30 million pieces, shrapnel is 5 million pieces. At present, the utilization rate of equipment stamping equipment is 60%. The factory has 40 sets of 5-axis CNC machines and 2 sets of 6-axis CNC machines that imported from Japan. The processing diameter is from 1.0-32MM, the processing precision is 0.005MM, and it can process different materials. The current equipment utilization rate is 70%. The factory is located in the Matigang Industrial Zone, Dalingshan Town, Dongguan City, a famous manufacturing city, 500 meters away from the highway intersection and 40 minutes drive from Shenzhen Airport. Discover even more details at lead frame suppliers.

Different materials may require different tool materials and coatings. For example, carbide tools are excellent for cutting hard metals, while high-speed steel tools might be suitable for softer materials. Matching the tool to the material and the specific machining task can enhance efficiency and part quality. Tool Path Optimization – Tool path planning is essential for reducing machining time and improving efficiency. Effective tool path strategies like climb milling, where the cutting tool rotates in the same direction as the material is fed, can reduce tool wear and improve surface finish. Trochoidal milling, a technique that uses circular tool paths, can also be beneficial for removing material efficiently. By optimizing tool paths, you can reduce machining time, minimize tool wear, and achieve better part quality.

In order to achieve the high quality requirements of customers with zero defects, we have introduced 5 sets of CCD automatic inspection equipment to directly realize the visual inspection and size inspection during production. Quality management system fully complies with IATF16949:2016. The quality is analyzed and monitored through five factors:man, machine, material, method and environments. Through the use of various tools that include PPAP, CP, FEMA and SPC, we continually and successfully guarantee that our commitments to you are met. We have also integrated these tools with some other quality processes to ensure added value and excellence.

Fortuna has more than 20 years of experience in product stamping and mold processing, and has extremely professional capabilities. Our mold processing uses slow wire cutting and grinding machine processing equipment imported from Japan. The tolerance of mold processing parts can reach 0.002mm, and the overall mold processing tolerance can reach 0.02mm. Our engineers have outstanding professional abilities. They all have more than 10 years of experience in the field of mold design, and are also proficient in Solid work, Pro/E, UG 3D software and CAD and other drawing softwares.

Leverage Advanced Machining Techniques: Techniques such as high-speed machining and adaptive machining can enhance efficiency. High-speed machining allows for faster material removal rates, while adaptive machining adjusts cutting parameters in real time to optimize performance and reduce tool wear. Material Utilization – The choice of material and how it is utilized can significantly impact the cost-effectiveness of CNC machining. Discover even more details at dgmetalstamping.com.

Fortuna can achieve riveting operations inside the mold. In-mold riveting refers to the rapid and accurate riveting operation of two or more stamping products inside the mold, which can reduce the product assembly process and achieve rapid product delivery. Features : High degree of automation: In-mold riveting technology adopts an automated control system, which can accurately control operations and ensure riveting quality to the greatest extent. This technology combines multiple stages of the manufacturing process into one, which not only maintains high-quality riveting effects, but also effectively reduces production costs and cycles, and improves productivity.

Part Complexity and Geometries – Complex designs can significantly impact CNC machining time and cost. Simplifying part geometries where possible can lead to more efficient machining. However, complex parts are often necessary, especially in high-tech applications. For complex parts, consider using multi-axis CNC machines that can handle intricate shapes and features. Designing with these capabilities in mind can lead to more efficient and cost-effective manufacturing.