Applications include attachment of reinforcing braces and stiffeners, functional brackets, hinges and other parts. Often, spot welding is the method of choice for assembly of entire enclosures, cabinets and multipart assemblies. Thickness of the majority of parts joined by spot welding ranges up to 1/8 in. (3 mm) for each member, although parts up to 1/4 in. (6 mm) thick have been successfully spot welded. Based on the experience of stampers and fabricators, certain general recommendations can facilitate spot welding of a sheet metal design, no matter what metalforming process is used to make it. It is always useful to consult with the metalformer in the design stage when questions arise regarding the part design, application of spot welding or, control of spot welding cost for a particular design.
Position the welding torch with the wire in the center of the hole contacting the back sheet of metal. It is important to arc against this back sheet rather than on the edge of the hole, otherwise the weld might not penetrate into the back sheet. The torch should ideally be pointing directly into the hole rather than at the angle in the photograph. Start welding in this position and don’t move the welder until the hole is almost full of weld. Then move the welder outwards in ever increasing circles until the weld is completed.
How Does Spot Welding Work? A form of resistance welding, spot welding is one of the oldest welding processes whereby two or more sheets of metal are welded together without the use of any filler material. The process involves applying pressure and heat to the weld area using shaped alloy copper electrodes which convey an electrical current through the weld pieces. The material melts, fusing the parts together at which point the current is turned off, pressure from the electrodes is maintained and the molten “nugget” solidifies to form the joint. See more details at Tecna Spot Welder Parts.
Electric welding relies on the Joule Effect. This is the thermal result of the electrical resistance, occurring when an electric current passes through a conductive metal – in this case metal sheets for assembly. If that last sentence went over your head, here’s how it works: to weld two or more sheets together without adding a filler metal, they are tightly compressed between two heat-resistant electrodes (i.e. non-melting), generally made of copper, and a high-intensity current is applied to melt the plates together at that point. The result is a small merging of metal which constitutes a welding point. The welding time is very short, between one and two seconds, and the shape of the resulting welding spot depends on your choice of electrodes.